Upper and Lower Bounds - Bounds of Functions

Bounds of Functions

The definitions can be generalised to sets of functions.

Given a set S of functions with domain F and a partially ordered set as codomain, a function g with domain is an upper bound of S if for each function f in S and for each x in F. In particular, g is said to be an upper bound of f when S consists of only one function f (i.e. S is a singleton). This does not imply that f is a lower bound of g.

Read more about this topic:  Upper And Lower Bounds

Famous quotes containing the words bounds of, bounds and/or functions:

    At bounds of boundless void.
    Samuel Beckett (1906–1989)

    How far men go for the material of their houses! The inhabitants of the most civilized cities, in all ages, send into far, primitive forests, beyond the bounds of their civilization, where the moose and bear and savage dwell, for their pine boards for ordinary use. And, on the other hand, the savage soon receives from cities iron arrow-points, hatchets, and guns, to point his savageness with.
    Henry David Thoreau (1817–1862)

    The mind is a finer body, and resumes its functions of feeding, digesting, absorbing, excluding, and generating, in a new and ethereal element. Here, in the brain, is all the process of alimentation repeated, in the acquiring, comparing, digesting, and assimilating of experience. Here again is the mystery of generation repeated.
    Ralph Waldo Emerson (1803–1882)