Upper and Lower Bounds - Bounds of Functions

Bounds of Functions

The definitions can be generalised to sets of functions.

Given a set S of functions with domain F and a partially ordered set as codomain, a function g with domain is an upper bound of S if for each function f in S and for each x in F. In particular, g is said to be an upper bound of f when S consists of only one function f (i.e. S is a singleton). This does not imply that f is a lower bound of g.

Read more about this topic:  Upper And Lower Bounds

Famous quotes containing the words bounds of, bounds and/or functions:

    At bounds of boundless void.
    Samuel Beckett (1906–1989)

    Nature seems at each man’s birth to have marked out the bounds of his virtues and vices, and to have determined how good or how wicked that man shall be capable of being.
    François, Duc De La Rochefoucauld (1613–1680)

    When Western people train the mind, the focus is generally on the left hemisphere of the cortex, which is the portion of the brain that is concerned with words and numbers. We enhance the logical, bounded, linear functions of the mind. In the East, exercises of this sort are for the purpose of getting in tune with the unconscious—to get rid of boundaries, not to create them.
    Edward T. Hall (b. 1914)