Examples in Particular Cases
If L is abelian (that is, the bracket is always 0), then U(L) is commutative; if a basis of the vector space L has been chosen, then U(L) can be identified with the polynomial algebra over K, with one variable per basis element.
If L is the Lie algebra corresponding to the Lie group G, U(L) can be identified with the algebra of left-invariant differential operators (of all orders) on G; with L lying inside it as the left-invariant vector fields as first-order differential operators.
To relate the above two cases: if L is a vector space V as abelian Lie algebra, the left-invariant differential operators are the constant coefficient operators, which are indeed a polynomial algebra in the partial derivatives of first order.
The center of U(L) is called Z(L) and consists of the left- and right- invariant differential operators; this in the case of G not commutative will often not be generated by first-order operators (see for example Casimir operator of a semi-simple Lie algebra).
Another characterisation in Lie group theory is of U(L) as the convolution algebra of distributions supported only at the identity element e of G.
The algebra of differential operators in n variables with polynomial coefficients may be obtained starting with the Lie algebra of the Heisenberg group. See Weyl algebra for this; one must take a quotient, so that the central elements of the Lie algebra act as prescribed scalars.
Read more about this topic: Universal Enveloping Algebra
Famous quotes containing the words examples and/or cases:
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“After all, the practical reason why, when the power is once in the hands of the people, a majority are permitted, and for a long period continue, to rule is not because they are most likely to be in the right, nor because this seems fairest to the minority, but because they are physically the strongest. But a government in which the majority rule in all cases cannot be based on justice, even as far as men understand it.”
—Henry David Thoreau (18171862)