Universal Property

In various branches of mathematics, a useful construction is often viewed as the “most efficient solution” to a certain problem. The definition of a universal property uses the language of category theory to make this notion precise and to study it abstractly.

This article gives a general treatment of universal properties. To understand the concept, it is useful to study several examples first, of which there are many: all free objects, direct product and direct sum, free group, free lattice, Grothendieck group, product topology, Stone–Čech compactification, tensor product, inverse limit and direct limit, kernel and cokernel, pullback, pushout and equalizer.

Read more about Universal Property:  Motivation, Formal Definition, Duality, Examples, History

Famous quotes containing the words universal and/or property:

    Commercial jazz, soap opera, pulp fiction, comic strips, the movies set the images, mannerisms, standards, and aims of the urban masses. In one way or another, everyone is equal before these cultural machines; like technology itself, the mass media are nearly universal in their incidence and appeal. They are a kind of common denominator, a kind of scheme for pre-scheduled, mass emotions.
    C. Wright Mills (1916–62)

    The English language is nobody’s special property. It is the property of the imagination: it is the property of the language itself.
    Derek Walcott (b. 1930)