Direct Construction
From this universal property, one can prove that if a Lie algebra has a universal enveloping algebra, then this enveloping algebra is uniquely determined by L (up to a unique algebra isomorphism). By the following construction, which suggests itself on general grounds (for instance, as part of a pair of adjoint functors), we establish that indeed every Lie algebra does have a universal enveloping algebra.
Starting with the tensor algebra T(L) on the vector space underlying L, we take U(L) to be the quotient of T(L) made by imposing the relations
for all a and b in (the image in T(L) of) L, where the bracket on the RHS means the given Lie algebra product, in L.
Formally, we define
where I is the two-sided ideal of T(L) generated by elements of the form
The natural map L → T(L) descends to a map h : L → U(L), and this is the Lie algebra homomorphism used in the universal property given above.
The analogous construction for Lie superalgebras is straightforward.
Read more about this topic: Universal Enveloping Algebra
Famous quotes containing the words direct and/or construction:
“The frequency of personal questions grows in direct proportion to your increasing girth. . . . No one would ask a man such a personally invasive question as Is your wife having natural childbirth or is she planning to be knocked out? But someone might ask that of you. No matter how much you wish for privacy, your pregnancy is a public event to which everyone feels invited.”
—Jean Marzollo (20th century)
“Theres no art
To find the minds construction in the face:
He was a gentleman on whom I built
An absolute trust.”
—William Shakespeare (15641616)