Definition
Suppose S is a set and fn : S → R is a real-valued function for every natural number n. We say that the sequence (fn)n∈N is uniformly convergent with limit f : S → R if for every ε > 0, there exists a natural number N such that for all x ∈ S and all n ≥ N we have |fn(x) − f(x)| < ε.
Consider the sequence αn = supx |fn(x) − f(x)| where the supremum is taken over all x ∈ S. Clearly fn converges to f uniformly if and only if αn tends to 0.
The sequence (fn)n∈N is said to be locally uniformly convergent with limit f if for every x in some metric space S, there exists an r > 0 such that (fn) converges uniformly on B(x,r) ∩ S.
Read more about this topic: Uniform Convergence
Famous quotes containing the word definition:
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)