Uniform Convergence - Definition

Definition

Suppose S is a set and fn : SR is a real-valued function for every natural number n. We say that the sequence (fn)nN is uniformly convergent with limit f : SR if for every ε > 0, there exists a natural number N such that for all xS and all nN we have |fn(x) − f(x)| < ε.

Consider the sequence αn = supx |fn(x) − f(x)| where the supremum is taken over all xS. Clearly fn converges to f uniformly if and only if αn tends to 0.

The sequence (fn)nN is said to be locally uniformly convergent with limit f if for every x in some metric space S, there exists an r > 0 such that (fn) converges uniformly on B(x,r) ∩ S.

Read more about this topic:  Uniform Convergence

Famous quotes containing the word definition:

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)