Uniform Convergence

In the mathematical field of analysis, uniform convergence is a type of convergence stronger than pointwise convergence. A sequence {fn} of functions converges uniformly to a limiting function f if the speed of convergence of fn(x) to f(x) does not depend on x.

The concept is important because several properties of the functions fn, such as continuity and Riemann integrability, are transferred to the limit f if the convergence is uniform.

Uniform convergence to a function on a given interval can be defined in terms of the uniform norm.

Read more about Uniform Convergence:  History, Definition, Examples, Properties, Almost Uniform Convergence

Famous quotes containing the word uniform:

    The Federal Constitution has stood the test of more than a hundred years in supplying the powers that have been needed to make the Central Government as strong as it ought to be, and with this movement toward uniform legislation and agreements between the States I do not see why the Constitution may not serve our people always.
    William Howard Taft (1857–1930)