Uniform Continuity - Local Continuity Versus Global Uniform Continuity

Local Continuity Versus Global Uniform Continuity

Continuity itself is a local (more precisely, pointwise) property of a function—that is, a function f is continuous, or not, at a particular point. When we speak of a function being continuous on an interval, we mean only that it is continuous at each point of the interval. In contrast, uniform continuity is a global property of f, in the sense that the standard definition refers to pairs of points rather than individual points. On the other hand, it is possible to give a local definition in terms of the natural extension f*, see below.

The mathematical statements that a function is continuous on an interval I and the definition that a function is uniformly continuous on the same interval are structurally very similar. Continuity of a function for every point x of an interval can thus be expressed by a formula starting with the quantification

which is equivalent to

whereas for uniform continuity, the order of the second and third quantifiers is reversed:

(the domains of the variables have been deliberately left out so as to emphasize quantifier order). Thus for continuity at each point, one takes an arbitrary point x, and then there must exist a distance δ,

while for uniform continuity a single δ must work uniformly for all points x (and y):

Read more about this topic:  Uniform Continuity

Famous quotes containing the words local, continuity, global and/or uniform:

    [Urging the national government] to eradicate local prejudices and mistaken rivalships to consolidate the affairs of the states into one harmonious interest.
    James Madison (1751–1836)

    If you associate enough with older people who do enjoy their lives, who are not stored away in any golden ghettos, you will gain a sense of continuity and of the possibility for a full life.
    Margaret Mead (1901–1978)

    Ours is a brand—new world of allatonceness. “Time” has ceased, “space” has vanished. We now live in a global village ... a simultaneous happening.
    Marshall McLuhan (1911–1980)

    He may be a very nice man. But I haven’t got the time to figure that out. All I know is, he’s got a uniform and a gun and I have to relate to him that way. That’s the only way to relate to him because one of us may have to die.
    James Baldwin (1924–1987)