Uniform Continuity - Local Continuity Versus Global Uniform Continuity

Local Continuity Versus Global Uniform Continuity

Continuity itself is a local (more precisely, pointwise) property of a function—that is, a function f is continuous, or not, at a particular point. When we speak of a function being continuous on an interval, we mean only that it is continuous at each point of the interval. In contrast, uniform continuity is a global property of f, in the sense that the standard definition refers to pairs of points rather than individual points. On the other hand, it is possible to give a local definition in terms of the natural extension f*, see below.

The mathematical statements that a function is continuous on an interval I and the definition that a function is uniformly continuous on the same interval are structurally very similar. Continuity of a function for every point x of an interval can thus be expressed by a formula starting with the quantification

which is equivalent to

whereas for uniform continuity, the order of the second and third quantifiers is reversed:

(the domains of the variables have been deliberately left out so as to emphasize quantifier order). Thus for continuity at each point, one takes an arbitrary point x, and then there must exist a distance δ,

while for uniform continuity a single δ must work uniformly for all points x (and y):

Read more about this topic:  Uniform Continuity

Famous quotes containing the words local, continuity, global and/or uniform:

    These native villages are as unchanging as the woman in one of their stories. When she was called before a local justice he asked her age. “I have 45 years.” “But,” said the justice, “you were forty-five when you appeared before me two years ago.” “Señor Judge,” she replied proudly, drawing herself to her full height, “I am not of those who are one thing today and another tomorrow!”
    State of New Mexico, U.S. public relief program (1935-1943)

    Continuous eloquence wearies.... Grandeur must be abandoned to be appreciated. Continuity in everything is unpleasant. Cold is agreeable, that we may get warm.
    Blaise Pascal (1623–1662)

    Ours is a brand—new world of allatonceness. “Time” has ceased, “space” has vanished. We now live in a global village ... a simultaneous happening.
    Marshall McLuhan (1911–1980)

    The sugar maple is remarkable for its clean ankle. The groves of these trees looked like vast forest sheds, their branches stopping short at a uniform height, four or five feet from the ground, like eaves, as if they had been trimmed by art, so that you could look under and through the whole grove with its leafy canopy, as under a tent whose curtain is raised.
    Henry David Thoreau (1817–1862)