Generalization To Uniform Spaces
Just as the most natural and general setting for continuity is topological spaces, the most natural and general setting for the study of uniform continuity are the uniform spaces. A function f : X → Y between uniform space is called uniformly continuous if for every entourage V in Y there exists an entourage U in X such that for every (x1, x2) in U we have (f(x1), f(x2)) in V.
In this setting, it is also true that uniformly continuous maps transform Cauchy sequences into Cauchy sequences and that continuous maps on compact uniform spaces are automatically uniformly continuous.
Each compact Hausdorff space possesses exactly one uniform structure compatible with the topology. A consequence is a generalisation of the Heine-Cantor theorem: each continuous function from a compact Hausdorff space to a uniform space is uniformly continuous.
Read more about this topic: Uniform Continuity
Famous quotes containing the words uniform and/or spaces:
“The maples
Stood uniform in buckets, and the steam
Of sap and snow rolled off the sugarhouse.”
—Robert Frost (18741963)
“We should read history as little critically as we consider the landscape, and be more interested by the atmospheric tints and various lights and shades which the intervening spaces create than by its groundwork and composition.”
—Henry David Thoreau (18171862)