Truncated Dodecahedron - Related Polyhedra and Tilings

Related Polyhedra and Tilings

It is part of a truncation process between a dodecahedron and icosahedron:

Family of uniform icosahedral polyhedra
{5,3} t0,1{5,3} t1{5,3} t0,1{3,5} {3,5} t0,2{5,3} t0,1,2{5,3} s{5,3}

This polyhedron is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and Coxeter group symmetry.

Symmetry Spherical Planar Hyperbolic...
*232

D3h
*332

Td
*432

Oh
*532

Ih
*632

P6m
*732

*832
...
*∞32

Order 12 24 48 120
Truncated
figures

3.4.4

3.6.6

3.8.8

3.10.10

3.12.12

3.14.14

3.16.16

3.∞.∞
Coxeter
Schläfli

t0,1{2,3}

t0,1{3,3}

t0,1{4,3}

t0,1{5,3}

t0,1{6,3}

t0,1{7,3}

t0,1{8,3}

t0,1{∞,3}
Triakis
figures

V3.4.4

V3.6.6

V3.8.8

V3.10.10

V3.12.12

V3.14.14
Coxeter

Read more about this topic:  Truncated Dodecahedron

Famous quotes containing the word related:

    So universal and widely related is any transcendent moral greatness, and so nearly identical with greatness everywhere and in every age,—as a pyramid contracts the nearer you approach its apex,—that, when I look over my commonplace-book of poetry, I find that the best of it is oftenest applicable, in part or wholly, to the case of Captain Brown.
    Henry David Thoreau (1817–1862)