Related Polyhedra and Tilings
It is part of a truncation process between a dodecahedron and icosahedron:
{5,3} | t0,1{5,3} | t1{5,3} | t0,1{3,5} | {3,5} | t0,2{5,3} | t0,1,2{5,3} | s{5,3} |
---|---|---|---|---|---|---|---|
This polyhedron is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and Coxeter group symmetry.
Symmetry | Spherical | Planar | Hyperbolic... | |||||
---|---|---|---|---|---|---|---|---|
*232 D3h |
*332 Td |
*432 Oh |
*532 Ih |
*632 P6m |
*732 |
*832 ... |
*∞32 |
|
Order | 12 | 24 | 48 | 120 | ∞ | |||
Truncated figures |
3.4.4 |
3.6.6 |
3.8.8 |
3.10.10 |
3.12.12 |
3.14.14 |
3.16.16 |
3.∞.∞ |
Coxeter Schläfli |
t0,1{2,3} |
t0,1{3,3} |
t0,1{4,3} |
t0,1{5,3} |
t0,1{6,3} |
t0,1{7,3} |
t0,1{8,3} |
t0,1{∞,3} |
Triakis figures |
V3.4.4 |
V3.6.6 |
V3.8.8 |
V3.10.10 |
V3.12.12 |
V3.14.14 |
||
Coxeter |
Read more about this topic: Truncated Dodecahedron
Famous quotes containing the word related:
“So universal and widely related is any transcendent moral greatness, and so nearly identical with greatness everywhere and in every age,as a pyramid contracts the nearer you approach its apex,that, when I look over my commonplace-book of poetry, I find that the best of it is oftenest applicable, in part or wholly, to the case of Captain Brown.”
—Henry David Thoreau (18171862)
Related Phrases
Related Words