Jordan Triple Systems
A triple system is said to be a Jordan triple system if the trilinear form, denoted {.,.,.}, satisfies the following identities:
The first identity abstracts the symmetry of the triple anticommutator, while the second identity means that if Lu,v:V→V is defined by Lu,v(y) = {u, v, y} then
so that the space of linear maps span {Lu,v:u,v ∈ V} is closed under commutator bracket, and hence is a Lie algebra g0.
Any Jordan triple system is a Lie triple system with respect to the product
A Jordan triple system is said to be positive definite (resp. nondegenerate) if the bilinear form on V defined by the trace of Lu,v is positive definite (resp. nondegenerate). In either case, there is an identification of V with its dual space, and a corresponding involution on g0. They induce an involution of
which in the positive definite case is a Cartan involution. The corresponding symmetric space is a symmetric R-space. It has a noncompact dual given by replacing the Cartan involution by its composite with the involution equal to +1 on g0 and −1 on V and V*. A special case of this construction arises when g0 preserves a complex structure on V. In this case we obtain dual Hermitian symmetric spaces of compact and noncompact type (the latter being bounded symmetric domains).
Read more about this topic: Triple System
Famous quotes containing the words jordan, triple and/or systems:
“As a child I was taught that to tell the truth was often painful. As an adult I have learned that not to tell the truth is more painful, and that the fear of telling the truthwhatever the truth may bethat fear is the most painful sensation of a moral life.”
—June Jordan (b. 1936)
“Their martyred blood and ashes sow
Oer all the Italian fields where still doth sway
The triple tyrant; that from these may grow
A hundredfold, who, having learnt thy way,
Early may fly the Babylonian woe.”
—John Milton (16081674)
“Our little systems have their day;
They have their day and cease to be:
They are but broken lights of thee,
And thou, O Lord, art more than they.”
—Alfred Tennyson (18091892)