Triple System

In algebra, a triple system is a vector space V over a field F together with a F-trilinear map

The most important examples are Lie triple systems and Jordan triple systems. They were introduced by Nathan Jacobson in 1949 to study subspaces of associative algebras closed under triple commutators, w] and triple anticommutators {u, {v, w}}. In particular, any Lie algebra defines a Lie triple system and any Jordan algebra defines a Jordan triple system. They are important in the theories of symmetric spaces, particularly Hermitian symmetric spaces and their generalizations (symmetric R-spaces and their noncompact duals).

Read more about Triple System:  Lie Triple Systems, Jordan Triple Systems, Jordan Pair, See Also

Famous quotes containing the words triple and/or system:

    And we fairies, that do run
    By the triple Hecate’s team
    From the presence of the sun,
    Following darkness like a dream,
    Now are frolic. Not a mouse
    Shall disturb this hallowed house.
    William Shakespeare (1564–1616)

    Social and scientific progress are assured, sir, once our great system of postpossession payments is in operation, not the installment plan, no sir, but a system of small postpossession payments that clinch the investment. No possible rational human wish unfulfilled. A man with a salary of fifty dollars a week can start payments on a Rolls-Royce, the Waldorf-Astoria, or a troupe of trained seals if he so desires.
    John Dos Passos (1896–1970)