Topological Constructions
Every subset of a topological space can be given the subspace topology in which the open sets are the intersections of the open sets of the larger space with the subset. For any indexed family of topological spaces, the product can be given the product topology, which is generated by the inverse images of open sets of the factors under the projection mappings. For example, in finite products, a basis for the product topology consists of all products of open sets. For infinite products, there is the additional requirement that in a basic open set, all but finitely many of its projections are the entire space.
A quotient space is defined as follows: if X is a topological space and Y is a set, and if f : X→ Y is a surjective function, then the quotient topology on Y is the collection of subsets of Y that have open inverse images under f. In other words, the quotient topology is the finest topology on Y for which f is continuous. A common example of a quotient topology is when an equivalence relation is defined on the topological space X. The map f is then the natural projection onto the set of equivalence classes.
The Vietoris topology on the set of all non-empty subsets of a topological space X, named for Leopold Vietoris, is generated by the following basis: for every n-tuple U1, ..., Un of open sets in X, we construct a basis set consisting of all subsets of the union of the Ui that have non-empty intersections with each Ui.
Read more about this topic: Topological Space