Thermodynamic Temperature

Thermodynamic temperature is the absolute measure of temperature and it is one of the principal parameters of thermodynamics.

Thermodynamic temperature is an "absolute" scale because it is the measure of the fundamental property underlying temperature: its null or zero point, absolute zero, is the temperature at which the particle constituents of matter have minimal motion and can become no colder.

At its simplest, temperature arises from the kinetic energy of the vibrational motions of matter's particle constituents (molecules, atoms, and subatomic particles). The full variety of these kinetic motions, along with potential energies of particles, and also occasionally certain other types of particle energy in equilibrium with these, contribute the total internal energy within a substance. Internal energy is loosely called the heat energy or thermal energy in conditions when no work is done upon the substance by its surroundings, or by the substance upon the surroundings. Internal energy may be stored in a number of ways within a substance, but only the kinetic energy of particles contributes to the substance's temperature.

Read more about Thermodynamic Temperature:  Overview, Practical Applications For Thermodynamic Temperature, Definition of Thermodynamic Temperature, History

Famous quotes containing the word temperature:

    This pond never breaks up so soon as the others in this neighborhood, on account both of its greater depth and its having no stream passing through it to melt or wear away the ice.... It indicates better than any water hereabouts the absolute progress of the season, being least affected by transient changes of temperature. A severe cold of a few days’ duration in March may very much retard the opening of the former ponds, while the temperature of Walden increases almost uninterruptedly.
    Henry David Thoreau (1817–1862)