Effect On Materials
Borosilicate glass is made to withstand thermal shock better than most other glass through a combination of reduced expansion coefficient and greater strength, though fused quartz outperforms it in both these respects. Some glass-ceramic materials (mostly in LAS system) include a controlled proportion of material with a negative expansion coefficient, so that the overall coefficient can be reduced to almost exactly zero over a reasonably wide range of temperatures.
Reinforced carbon-carbon is extremely resistant to thermal shock, due to graphite's extremely high thermal conductivity and low expansion coefficient, the high strength of carbon fiber, and a reasonable ability to deflect cracks within the structure.
To measure thermal shock the impulse excitation technique proved to be a useful tool. It can be used to measure Young's modulus, Shear modulus, Poisson's ratio and damping coefficient in a non destructive way. The same test-piece can be measured after different thermal shock cycles and this way the detoriation in physical properties can be mapped out.
Read more about this topic: Thermal Shock
Famous quotes containing the words effect on, effect and/or materials:
“Before the effect one believes in different causes than one does after the effect.”
—Friedrich Nietzsche (18441900)
“I would define the poetic effect as the capacity that a text displays for continuing to generate different readings, without ever being completely consumed.”
—Umberto Eco (b. 1932)
“What is most interesting and valuable in it, however, is not the materials for the history of Pontiac, or Braddock, or the Northwest, which it furnishes; not the annals of the country, but the natural facts, or perennials, which are ever without date. When out of history the truth shall be extracted, it will have shed its dates like withered leaves.”
—Henry David Thoreau (18171862)