Tensor Product - Relation With The Dual Space

Relation With The Dual Space

In the discussion on the universal property, replacing Z by the underlying scalar field of V and W yields that the space (VW)* (the dual space of VW, containing all linear functionals on that space) is naturally identified with the space of all bilinear functionals on V × W In other words, every bilinear functional is a functional on the tensor product, and vice versa.

Whenever V and W are finite dimensional, there is a natural isomorphism between V* ⊗ W* and (VW)*, whereas for vector spaces of arbitrary dimension we only have an inclusion V* ⊗ W* ⊂ (VW)*. So, the tensors of the linear functionals are bilinear functionals. This gives us a new way to look at the space of bilinear functionals, as a tensor product itself.

Read more about this topic:  Tensor Product

Famous quotes containing the words relation with the, relation with, relation, dual and/or space:

    There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.
    Umberto Eco (b. 1932)

    There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.
    Umberto Eco (b. 1932)

    Much poetry seems to be aware of its situation in time and of its relation to the metronome, the clock, and the calendar. ... The season or month is there to be felt; the day is there to be seized. Poems beginning “When” are much more numerous than those beginning “Where” of “If.” As the meter is running, the recurrent message tapped out by the passing of measured time is mortality.
    William Harmon (b. 1938)

    Thee for my recitative,
    Thee in the driving storm even as now, the snow, the winter-day
    declining,
    Thee in thy panoply, thy measur’d dual throbbing and thy beat
    convulsive,
    Thy black cylindric body, golden brass and silvery steel,
    Walt Whitman (1819–1892)

    from above, thin squeaks of radio static,
    The captured fume of space foams in our ears—
    Hart Crane (1899–1932)