Examples
The Maclaurin series for any polynomial is the polynomial itself.
The Maclaurin series for (1 − x)−1 for |x| < 1 is the geometric series
so the Taylor series for x−1 at a = 1 is
By integrating the above Maclaurin series we find the Maclaurin series for log(1 − x), where log denotes the natural logarithm:
and the corresponding Taylor series for log(x) at a = 1 is
and more generally, the corresponding Taylor series for log(x) at some is:
The Taylor series for the exponential function ex at a = 0 is
The above expansion holds because the derivative of ex with respect to x is also ex and e0 equals 1. This leaves the terms (x − 0)n in the numerator and n! in the denominator for each term in the infinite sum.
Read more about this topic: Taylor Series
Famous quotes containing the word examples:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)