Taylor Series - Definition

Definition

The Taylor series of a real or complex-valued function ƒ(x) that is infinitely differentiable in a neighborhood of a real or complex number a is the power series

which can be written in the more compact sigma notation as

where n! denotes the factorial of n and ƒ (n)(a) denotes the nth derivative of ƒ evaluated at the point a. The derivative of order zero ƒ is defined to be ƒ itself and (xa)0 and 0! are both defined to be 1. In the case that a = 0, the series is also called a Maclaurin series.

Read more about this topic:  Taylor Series

Famous quotes containing the word definition:

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)