Suppose that (V,ω) and (W,ρ) are symplectic vector spaces. Then a linear map ƒ : V → W is called a symplectic map if the pullback preserves the symplectic form, i.e. ƒ*ρ = ω, where the pullback form is defined by (ƒ*ρ)(u,v) = ρ(ƒ(u),ƒ(v)),. Note that symplectic maps are volume-preserving, orientation-preserving, and are vector space isomorphisms.
Read more about this topic: Symplectic Vector Space
Famous quotes containing the word map:
“Unless, governor, teacher inspector, visitor,
This map becomes their window and these windows
That open on their lives like crouching tombs
Break, O break open,”
—Stephen Spender (19091995)
Related Phrases
Related Words