Properties
The subspace topology has the following characteristic property. Let be a subspace of and let be the inclusion map. Then for any topological space a map is continuous if and only if the composite map is continuous.
This property is characteristic in the sense that it can be used to define the subspace topology on .
We list some further properties of the subspace topology. In the following let be a subspace of .
- If is continuous the restriction to is continuous.
- If is continuous then is continuous.
- The closed sets in are precisely the intersections of with closed sets in .
- If is a subspace of then is also a subspace of with the same topology. In other words the subspace topology that inherits from is the same as the one it inherits from .
- Suppose is an open subspace of . Then a subspace of is open in if and only if it is open in .
- Suppose is a closed subspace of . Then a subspace of is closed in if and only if it is closed in .
- If is a base for then is a basis for .
- The topology induced on a subset of a metric space by restricting the metric to this subset coincides with subspace topology for this subset.
Read more about this topic: Subspace Topology
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)