Steiner System

In combinatorial mathematics, a Steiner system (named after Jakob Steiner) is a type of block design, specifically a t-design with λ = 1 and t ≥ 2.

A Steiner system with parameters t, k, n, written S(t,k,n), is an n-element set S together with a set of k-element subsets of S (called blocks) with the property that each t-element subset of S is contained in exactly one block. In an alternate notation for block designs, an S(t,k,n) would be a t-(n,k,1) design.

This definition is relatively modern, generalizing the classical definition of Steiner systems which in addition required that k = t + 1. An S(2,3,n) was (and still is) called a Steiner triple system, while an S(3,4,n) was called a Steiner quadruple system, and so on. With the generalization of the definition, this naming system is no longer strictly adhered to.

As of 2012, an outstanding problem in design theory is if any nontrivial Steiner systems have t ≥ 6. It is also unknown if infinitely many have t = 5.

Read more about Steiner System:  Properties, History, Mathieu Groups, The Steiner System S(5, 6, 12), The Steiner System S(5, 8, 24)

Famous quotes containing the words steiner and/or system:

    To many men ... the miasma of peace seems more suffocating than the bracing air of war.
    —George Steiner (b. 1929)

    Our system of government, in spite of Vietnam, Cambodia, CIA, Watergate, is still the best system of government on earth. And the greatest resource of all are the 215 million Americans who still have within us the strength, the character, the intelligence, the experience, the patriotism, the idealism, the compassion, the sense of brotherhood on which we can rely in the future to restore the greatness to our country.
    Jimmy Carter (James Earl Carter, Jr.)