In combinatorial mathematics, a Steiner system (named after Jakob Steiner) is a type of block design, specifically a t-design with λ = 1 and t ≥ 2.
A Steiner system with parameters t, k, n, written S(t,k,n), is an n-element set S together with a set of k-element subsets of S (called blocks) with the property that each t-element subset of S is contained in exactly one block. In an alternate notation for block designs, an S(t,k,n) would be a t-(n,k,1) design.
This definition is relatively modern, generalizing the classical definition of Steiner systems which in addition required that k = t + 1. An S(2,3,n) was (and still is) called a Steiner triple system, while an S(3,4,n) was called a Steiner quadruple system, and so on. With the generalization of the definition, this naming system is no longer strictly adhered to.
As of 2012, an outstanding problem in design theory is if any nontrivial Steiner systems have t ≥ 6. It is also unknown if infinitely many have t = 5.
Read more about Steiner System: Properties, History, Mathieu Groups, The Steiner System S(5, 6, 12), The Steiner System S(5, 8, 24)
Famous quotes containing the words steiner and/or system:
“Language can only deal meaningfully with a special, restricted segment of reality. The rest, and it is presumably the much larger part, is silence.”
—George Steiner (b. 1929)
“The truth is, the whole administration under Roosevelt was demoralized by the system of dealing directly with subordinates. It was obviated in the State Department and the War Department under [Secretary of State Elihu] Root and me [Taft was the Secretary of War], because we simply ignored the interference and went on as we chose.... The subordinates gained nothing by his assumption of authority, but it was not so in the other departments.”
—William Howard Taft (18571930)