Formal Definition
A statistical model is a collection of probability distribution functions or probability density functions (collectively referred to as distributions for brevity). A parametric model is a collection of distributions, each of which is indexed by a unique finite-dimensional parameter:, where is a parameter and is the feasible region of parameters, which is a subset of d-dimensional Euclidean space. A statistical model may be used to describe the set of distributions from which one assumes that a particular data set is sampled. For example, if one assumes that data arise from a univariate Gaussian distribution, then one has assumed a Gaussian model: .
A non-parametric model is a set of probability distributions with infinite dimensional parameters, and might be written as . A semi-parametric model also has infinite dimensional parameters, but is not dense in the space of distributions. For example, a mixture of Gaussians with one Gaussian at each data point is dense in the space of distributions. Formally, if d is the dimension of the parameter, and n is the number of samples, if as and as, then the model is semi-parametric.
Read more about this topic: Statistical Models
Famous quotes containing the words formal and/or definition:
“The spiritual kinship between Lincoln and Whitman was founded upon their Americanism, their essential Westernism. Whitman had grown up without much formal education; Lincoln had scarcely any education. One had become the notable poet of the day; one the orator of the Gettsyburg Address. It was inevitable that Whitman as a poet should turn with a feeling of kinship to Lincoln, and even without any association or contact feel that Lincoln was his.”
—Edgar Lee Masters (18691950)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)