Statistical Model - Formal Definition

Formal Definition

A Statistical model, is a collection of probability distribution functions or probability density functions (collectively referred to as distributions for brevity). A parametric model is a collection of distributions, each of which is indexed by a unique finite-dimensional parameter:, where is a parameter and is the feasible region of parameters, which is a subset of d-dimensional Euclidean space. A statistical model may be used to describe the set of distributions from which one assumes that a particular data set is sampled. For example, if one assumes that data arise from a univariate Gaussian distribution, then one has assumed a Gaussian model: .

A non-parametric model is a set of probability distributions with infinite dimensional parameters, and might be written as . A semi-parametric model also has infinite dimensional parameters, but is not dense in the space of distributions. For example, a mixture of Gaussians with one Gaussian at each data point is dense is the space of distributions. Formally, if d is the dimension of the parameter, and n is the number of samples, if as and as, then the model is semi-parametric.

Read more about this topic:  Statistical Model

Famous quotes containing the words formal and/or definition:

    True variety is in that plenitude of real and unexpected elements, in the branch charged with blue flowers thrusting itself, against all expectations, from the springtime hedge which seems already too full, while the purely formal imitation of variety ... is but void and uniformity, that is, that which is most opposed to variety....
    Marcel Proust (1871–1922)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)