A parametric model is a collection of probability distributions such that each member of this collection, Pθ, is described by a finite-dimensional parameter θ. The set of all allowable values for the parameter is denoted Θ ⊆ Rk, and the model itself is written as
When the model consists of absolutely continuous distributions, it is often specified in terms of corresponding probability density functions:
The parametric model is called identifiable if the mapping θ ↦ Pθ is invertible, that is there are no two different parameter values θ1 and θ2 such that Pθ1 = Pθ2.
Read more about Parametric Model: Regular Parametric Model, See Also
Famous quotes containing the word model:
“If the man who paints only the tree, or flower, or other surface he sees before him were an artist, the king of artists would be the photographer. It is for the artist to do something beyond this: in portrait painting to put on canvas something more than the face the model wears for that one day; to paint the man, in short, as well as his features.”
—James Mcneill Whistler (18341903)