In fluid dynamics, a stagnation point is a point in a flow field where the local velocity of the fluid is zero. Stagnation points exist at the surface of objects in the flow field, where the fluid is brought to rest by the object. The Bernoulli equation shows that the static pressure is highest when the velocity is zero and hence static pressure is at its maximum value at stagnation points. This static pressure is called the stagnation pressure.
The Bernoulli equation applicable to incompressible flow shows that the stagnation pressure is equal to the dynamic pressure plus static pressure. Total pressure is also equal to dynamic pressure plus static pressure so, in incompressible flows, stagnation pressure is equal to total pressure. (In compressible flows, stagnation pressure is also equal to total pressure providing the fluid entering the stagnation point is brought to rest isentropically.)
Read more about Stagnation Point: Pressure Coefficient, Kutta Condition
Famous quotes containing the word point:
“One point in my public life: I did all I could for the reform of the civil service, for the building up of the South, for a sound currency, etc., etc., but I never forgot my party.... I knew that all good measures would suffer if my Administration was followed by the defeat of my party. Result, a great victory in 1880. Executive and legislature both completely Republican.”
—Rutherford Birchard Hayes (18221893)