Spectrum of A Ring - Functional Analysis Perspective

Functional Analysis Perspective

The term "spectrum" comes from the use in operator theory. Given a linear operator T on a finite-dimensional vector space V, one can consider the vector space with operator as a module over the polynomial ring in one variable R=K, as in the structure theorem for finitely generated modules over a principal ideal domain. Then the spectrum of K (as a ring) equals the spectrum of T (as an operator).

Further, the geometric structure of the spectrum of the ring (equivalently, the algebraic structure of the module) captures the behavior of the spectrum of the operator, such as algebraic multiplicity and geometric multiplicity. For instance, for the 2×2 identity matrix has corresponding module:

the 2×2 zero matrix has module

showing geometric multiplicity 2 for the zero eigenvalue, while a non-trivial 2×2 nilpotent matrix has module

showing algebraic multiplicity 2 but geometric multiplicity 1.

In more detail:

  • the eigenvalues (with geometric multiplicity) of the operator correspond to the (reduced) points of the variety, with multiplicity;
  • the primary decomposition of the module corresponds to the unreduced points of the variety;
  • a diagonalizable (semisimple) operator corresponds to a reduced variety;
  • a cyclic module (one generator) corresponds to the operator having a cyclic vector (a vector whose orbit under T spans the space);
  • the first invariant factor of the module equals the minimal polynomial of the operator, and the last invariant factor equals the characteristic polynomial.

Read more about this topic:  Spectrum Of A Ring

Famous quotes containing the words functional, analysis and/or perspective:

    In short, the building becomes a theatrical demonstration of its functional ideal. In this romanticism, High-Tech architecture is, of course, no different in spirit—if totally different in form—from all the romantic architecture of the past.
    Dan Cruickshank (b. 1949)

    Whatever else American thinkers do, they psychologize, often brilliantly. The trouble is that psychology only takes us so far. The new interest in families has its merits, but it will have done us all a disservice if it turns us away from public issues to private matters. A vision of things that has no room for the inner life is bankrupt, but a psychology without social analysis or politics is both powerless and very lonely.
    Joseph Featherstone (20th century)

    No one thinks anything silly is suitable when they are an adolescent. Such an enormous share of their own behavior is silly that they lose all proper perspective on silliness, like a baker who is nauseated by the sight of his own eclairs. This provides another good argument for the emerging theory that the best use of cryogenics is to freeze all human beings when they are between the ages of twelve and nineteen.
    Anna Quindlen (20th century)