Space Group - Notation For Space Groups

Notation For Space Groups

There are at least eight methods of naming space groups. Some of these methods can assign several different names to the same space group, so altogether there are many thousands of different names.

  • Number. The International Union of Crystallography publishes tables of all space group types, and assigns each a unique number from 1 to 230. The numbering is arbitrary, except that groups with the same crystal system or point group are given consecutive numbers.
  • International symbol or Hermann–Mauguin notation. The Hermann–Mauguin (or international) notation describes the lattice and some generators for the group. It has a shortened form called the international short symbol, which is the one most commonly used in crystallography, and usually consists of a set of four symbols. The first describes the centering of the Bravais lattice (P, A, B, C, I, R or F). The next three describe the most prominent symmetry operation visible when projected along one of the high symmetry directions of the crystal. These symbols are the same as used in point groups, with the addition of glide planes and screw axis, described above. By way of example, the space group of quartz is P3121, showing that it exhibits primitive centering of the motif (i.e., once per unit cell), with a threefold screw axis and a twofold rotation axis. Note that it does not explicitly contain the crystal system, although this is unique to each space group (in the case of P3121, it is trigonal).
In the international short symbol the first symbol (31 in this example) denotes the symmetry along the major axis (c-axis in trigonal cases), the second (2 in this case) along axes of secondary importance (a and b) and the third symbol the symmetry in another direction. In the trigonal case there also exists a space group P3112. In this space group the twofold axes are not along the a and b-axes but in a direction rotated by 30°.
The international symbols and international short symbols for some of the space groups were changed slightly between 1935 and 2002, so several space groups have 4 different international symbols in use.
  • Hall notation. Space group notation with an explicit origin. Rotation, translation and axis-direction symbols are clearly separated and inversion centers are explicitly defined. The construction and format of the notation make it particularly suited to computer generation of symmetry information. For example, group number 3 has three Hall symbols: P 2y (P 1 2 1), P 2 (P 1 1 2), P 2x (P 2 1 1).
  • Schönflies notation. The space groups with given point group are numbered by 1, 2, 3, ... (in the same order as their international number) and this number is added as a superscript to the Schönflies symbol for the point group. For example, groups numbers 3 to 5 whose point group is C2 have Schönflies symbols C1
    2, C2
    2, C3
    2.
  • Shubnikov symbol
  • 2D:Orbifold notation and 3D:Fibrifold notation. As the name suggests, the orbifold notation describes the orbifold, given by the quotient of Euclidean space by the space group, rather than generators of the space group. It was introduced by Conway and Thurston, and is not used much outside mathematics. Some of the space groups have several different fibrifolds associated to them, so have several different fibrifold symbols.
  • Coxeter notation – Spacial and point symmetry groups, represented as modications of the pure reflectional Coxeter groups.

Read more about this topic:  Space Group

Famous quotes containing the words space and/or groups:

    Our passionate preoccupation with the sky, the stars, and a God somewhere in outer space is a homing impulse. We are drawn back to where we came from.
    Eric Hoffer (1902–1983)

    Some of the greatest and most lasting effects of genuine oratory have gone forth from secluded lecture desks into the hearts of quiet groups of students.
    Woodrow Wilson (1856–1924)