In mathematics and geometry, a space group is a symmetry group, usually for three dimensions, that divides space into discrete repeatable domains.
In three dimensions, there are 219 distinct types, or counted as 230 if chiral copies are considered distinct. Space groups are also studied in dimensions other than 3 where they are sometimes called Bieberbach groups, and are discrete cocompact groups of isometries of an oriented Euclidean space.
In crystallography, they are also called the crystallographic or Fedorov groups, and represent a description of the symmetry of the crystal. A definitive source regarding 3-dimensional space groups is the International Tables for Crystallography (Hahn (2002)).
Read more about Space Group: History, Elements of A Space Group, Notation For Space Groups, Classification Systems For Space Groups, Table of Space Groups in 3 Dimensions
Famous quotes containing the words space and/or group:
“The true gardener then brushes over the ground with slow and gentle hand, to liberate a space for breath round some favourite; but he is not thinking about destruction except incidentally. It is only the amateur like myself who becomes obsessed and rejoices with a sadistic pleasure in weeds that are big and bad enough to pull, and at last, almost forgetting the flowers altogether, turns into a Reformer.”
—Freya Stark (18931993)
“Just as a person who is always asserting that he is too good-natured is the very one from whom to expect, on some occasion, the coldest and most unconcerned cruelty, so when any group sees itself as the bearer of civilization this very belief will betray it into behaving barbarously at the first opportunity.”
—Simone Weil (19101943)