General Form
In general, the function may also have:
- a spatial dimension, x (aka position), with wavenumber k
- a non-zero center amplitude, D
which looks like this:
The wavenumber is related to the angular frequency by:.
where λ is the wavelength, f is the frequency, and c is the speed of propagation.
This equation gives a sine wave for a single dimension, thus the generalized equation given above gives the amplitude of the wave at a position x at time t along a single line. This could, for example, be considered the value of a wave along a wire.
In two or three spatial dimensions, the same equation describes a travelling plane wave if position x and wavenumber k are interpreted as vectors, and their product as a dot product. For more complex waves such as the height of a water wave in a pond after a stone has been dropped in, more complex equations are needed.
Read more about this topic: Sine Wave
Famous quotes containing the words general and/or form:
“As a general rule, do not kick the shins of the opposite gentleman under the table, if personally unaquainted with him; your pleasantry is liable to be misunderstooda circumstance at all times unpleasant.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“The man who is admired for the ingenuity of his larceny is almost always rediscovering some earlier form of fraud. The basic forms are all known, have all been practicised. The manners of capitalism improve. The morals may not.”
—John Kenneth Galbraith (b. 1908)