Even and Odd Functions

Even And Odd Functions

In mathematics, even functions and odd functions are functions which satisfy particular symmetry relations, with respect to taking additive inverses. They are important in many areas of mathematical analysis, especially the theory of power series and Fourier series. They are named for the parity of the powers of the power functions which satisfy each condition: the function f(x) = xn is an even function if n is an even integer, and it is an odd function if n is an odd integer.

Read more about Even And Odd Functions:  Definition and Examples, Some Facts, Harmonics

Famous quotes containing the words odd and/or functions:

    Actually being married seemed so crowded with unspoken rules and odd secrets and unfathomable responsibilities that it had no more occurred to her to imagine being married herself than it had to imagine driving a motorcycle or having a job. She had, however, thought about being a bride, which had more to do with being the center of attention and looking inexplicably, temporarily beautiful than it did with sharing a double bed with someone with hairy legs and a drawer full of boxer shorts.
    Anna Quindlen (b. 1952)

    Those things which now most engage the attention of men, as politics and the daily routine, are, it is true, vital functions of human society, but should be unconsciously performed, like the corresponding functions of the physical body.
    Henry David Thoreau (1817–1862)