Sinc Function - Relationship To The Dirac Delta Distribution

Relationship To The Dirac Delta Distribution

The normalized sinc function can be used as a nascent delta function, meaning that the following weak limit holds:

This is not an ordinary limit, since the left side does not converge. Rather, it means that

\lim_{a\rightarrow 0}\int_{-\infty}^\infty \frac{1}{a}\textrm{sinc}(x/a)\varphi(x)\,dx = \varphi(0),

for any smooth function with compact support.

In the above expression, as a approaches zero, the number of oscillations per unit length of the sinc function approaches infinity. Nevertheless, the expression always oscillates inside an envelope of ±1/(π a x), and approaches zero for any nonzero value of x. This complicates the informal picture of δ(x) as being zero for all x except at the point x = 0 and illustrates the problem of thinking of the delta function as a function rather than as a distribution. A similar situation is found in the Gibbs phenomenon.

Read more about this topic:  Sinc Function

Famous quotes containing the words relationship to, relationship and/or distribution:

    Whatever may be our just grievances in the southern states, it is fitting that we acknowledge that, considering their poverty and past relationship to the Negro race, they have done remarkably well for the cause of education among us. That the whole South should commit itself to the principle that the colored people have a right to be educated is an immense acquisition to the cause of popular education.
    Fannie Barrier Williams (1855–1944)

    ... the Wall became a magnet for citizens of every generation, class, race, and relationship to the war perhaps because it is the only great public monument that allows the anesthetized holes in the heart to fill with a truly national grief.
    Adrienne Rich (b. 1929)

    In this distribution of functions, the scholar is the delegated intellect. In the right state, he is, Man Thinking. In the degenerate state, when the victim of society, he tends to become a mere thinker, or, still worse, the parrot of other men’s thinking.
    Ralph Waldo Emerson (1803–1882)