Closure, Star, and Link
Let K be a simplicial complex and let S be a collection of simplices in K.
The closure of S (denoted Cl S) is the smallest simplicial subcomplex of K that contains each simplex in S. Cl S is obtained by repeatedly adding to S each face of every simplex in S.
The star of S (denoted St S) is the set of all simplices in K that have any faces in S. (Note that the star is generally not a simplicial complex itself).
The link of S (denoted Lk S) equals Cl St S - St Cl S. It is the closed star of S minus the stars of all faces of S.
Read more about this topic: Simplicial Complex
Famous quotes containing the word link:
“The lifelong process of caregiving, is the ultimate link between caregivers of all ages. You and I are not just in a phase we will outgrow. This is lifebirth, death, and everything in between.... The care continuum is the cycle of life turning full circle in each of our lives. And what we learn when we spoon-feed our babies will echo in our ears as we feed our parents. The point is not to be done. The point is to be ready to do again.”
—Paula C. Lowe (20th century)