A simplicial complex is a set of simplices that satisfies the following conditions:
- 1. Any face of a simplex from is also in .
- 2. The intersection of any two simplices is a face of both and .
Note that the empty set is a face of every simplex. See also the definition of an abstract simplicial complex, which loosely speaking is a simplicial complex without an associated geometry.
A simplicial k-complex is a simplicial complex where the largest dimension of any simplex in equals k. For instance, a simplicial 2-complex must contain at least one triangle, and must not contain any tetrahedra or higher-dimension simplices.
A pure or homogeneous simplicial k-complex is a simplicial complex where every simplex of dimension less than k is a face of some simplex of dimension exactly k. Informally, a pure 1-complex "looks" like it's made of a bunch of lines, a 2-complex "looks" like it's made of a bunch of triangles, etc. An example of a non-homogeneous complex is a triangle with a line segment attached to one of its vertices.
A facet is any simplex in a complex that is not a face of any larger simplex. (Note the difference from a "face" of a simplex). A pure simplicial complex can be thought of as a complex where all facets have the same dimension.
Sometimes the term face is used to refer to a simplex of a complex, not to be confused with a face of a simplex.
For a simplicial complex embedded in a k-dimensional space, the k-faces are sometimes referred to as its cells. The term cell is sometimes used in a broader sense to denote a set homeomorphic to a simplex, leading to the definition of cell complex.
The underlying space, sometimes called the carrier of a simplicial complex is the union of its simplices.
Read more about Simplicial Complex: Closure, Star, and Link, Algebraic Topology, Combinatorics
Famous quotes containing the word complex:
“What we do is as American as lynch mobs. America has always been a complex place.”
—Jerry Garcia (19421995)