Simplicial Complex

A simplicial complex is a set of simplices that satisfies the following conditions:

1. Any face of a simplex from is also in .
2. The intersection of any two simplices is a face of both and .

Note that the empty set is a face of every simplex. See also the definition of an abstract simplicial complex, which loosely speaking is a simplicial complex without an associated geometry.

A simplicial k-complex is a simplicial complex where the largest dimension of any simplex in equals k. For instance, a simplicial 2-complex must contain at least one triangle, and must not contain any tetrahedra or higher-dimension simplices.

A pure or homogeneous simplicial k-complex is a simplicial complex where every simplex of dimension less than k is a face of some simplex of dimension exactly k. Informally, a pure 1-complex "looks" like it's made of a bunch of lines, a 2-complex "looks" like it's made of a bunch of triangles, etc. An example of a non-homogeneous complex is a triangle with a line segment attached to one of its vertices.

A facet is any simplex in a complex that is not a face of any larger simplex. (Note the difference from a "face" of a simplex). A pure simplicial complex can be thought of as a complex where all facets have the same dimension.

Sometimes the term face is used to refer to a simplex of a complex, not to be confused with a face of a simplex.

For a simplicial complex embedded in a k-dimensional space, the k-faces are sometimes referred to as its cells. The term cell is sometimes used in a broader sense to denote a set homeomorphic to a simplex, leading to the definition of cell complex.

The underlying space, sometimes called the carrier of a simplicial complex is the union of its simplices.

Read more about Simplicial Complex:  Closure, Star, and Link, Algebraic Topology, Combinatorics

Famous quotes containing the word complex:

    In ordinary speech the words perception and sensation tend to be used interchangeably, but the psychologist distinguishes. Sensations are the items of consciousness—a color, a weight, a texture—that we tend to think of as simple and single. Perceptions are complex affairs that embrace sensation together with other, associated or revived contents of the mind, including emotions.
    Jacques Barzun (b. 1907)