Structure of Finite Simple Groups
The famous theorem of Feit and Thompson states that every group of odd order is solvable. Therefore every finite simple group has even order unless it is cyclic of prime order.
The Schreier conjecture asserts that the group of outer automorphisms of every finite simple group is solvable. This can be proved using the classification theorem.
Read more about this topic: Simple Group
Famous quotes containing the words structure of, structure, finite, simple and/or groups:
“The verbal poetical texture of Shakespeare is the greatest the world has known, and is immensely superior to the structure of his plays as plays. With Shakespeare it is the metaphor that is the thing, not the play.”
—Vladimir Nabokov (18991977)
“There is no such thing as a language, not if a language is anything like what many philosophers and linguists have supposed. There is therefore no such thing to be learned, mastered, or born with. We must give up the idea of a clearly defined shared structure which language-users acquire and then apply to cases.”
—Donald Davidson (b. 1917)
“Sisters define their rivalry in terms of competition for the gold cup of parental love. It is never perceived as a cup which runneth over, rather a finite vessel from which the more one sister drinks, the less is left for the others.”
—Elizabeth Fishel (20th century)
“The Simple Life is not a simple life.”
—Mason Cooley (b. 1927)
“In properly organized groups no faith is required; what is required is simply a little trust and even that only for a little while, for the sooner a man begins to verify all he hears the better it is for him.”
—George Gurdjieff (c. 18771949)