Simple Group - Structure of Finite Simple Groups

Structure of Finite Simple Groups

The famous theorem of Feit and Thompson states that every group of odd order is solvable. Therefore every finite simple group has even order unless it is cyclic of prime order.

The Schreier conjecture asserts that the group of outer automorphisms of every finite simple group is solvable. This can be proved using the classification theorem.

Read more about this topic:  Simple Group

Famous quotes containing the words structure of, structure, finite, simple and/or groups:

    A special feature of the structure of our book is the monstrous but perfectly organic part that eavesdropping plays in it.
    Vladimir Nabokov (1899–1977)

    There is no such thing as a language, not if a language is anything like what many philosophers and linguists have supposed. There is therefore no such thing to be learned, mastered, or born with. We must give up the idea of a clearly defined shared structure which language-users acquire and then apply to cases.
    Donald Davidson (b. 1917)

    The finite is annihilated in the presence of the infinite, and becomes a pure nothing. So our spirit before God, so our justice before divine justice.
    Blaise Pascal (1623–1662)

    I ... observed the great beauty of American government to be, that the simple machines of representation, carried through all its parts, gives facility for a being moulded at will to fit with the knowledge of the age; that thus, although it should be imperfect in any or all of its parts, it bears within it a perfect principle the principle of improvement.

    Frances Wright (1795–1852)

    Women over fifty already form one of the largest groups in the population structure of the western world. As long as they like themselves, they will not be an oppressed minority. In order to like themselves they must reject trivialization by others of who and what they are. A grown woman should not have to masquerade as a girl in order to remain in the land of the living.
    Germaine Greer (b. 1939)