In the mathematical field of real analysis, a simple function is a (sufficiently 'nice' - see below for the formal definition) real-valued function over a subset of the real line which attains only a finite number of values. Some authors also require simple functions to be measurable; as used in practice, they invariably are.
A basic example of a simple function is the floor function over the half-open interval [1,9), whose only values are {1,2,3,4,5,6,7,8}. A more advanced example is the Dirichlet function over the real line, which takes the value 1 if x is rational and 0 otherwise. (Thus the "simple" of "simple function" has a technical meaning somewhat at odds with common language.) Note also that all step functions are simple.
Simple functions are used as a first stage in the development of theories of integration, such as the Lebesgue integral, because it is very easy to create a definition of an integral for a simple function, and also, it is straightforward to approximate more general functions by sequences of simple functions.
Read more about Simple Function: Definition, Properties of Simple Functions, Integration of Simple Functions, Relation To Lebesgue Integration
Famous quotes containing the words simple and/or function:
“It would not be an easy thing to bring the water all the way to the plain. They would have to organize a great coumbite with all the peasants and the water would unite them once again, its fresh breath would clear away the fetid stink of anger and hatred; the brotherly community would be reborn with new plants, the fields filled with to bursting with fruits and grains, the earth gorged with life, simple and fertile.”
—Jacques Roumain (19071945)
“Our father has an even more important function than modeling manhood for us. He is also the authority to let us relax the requirements of the masculine model: if our father accepts us, then that declares us masculine enough to join the company of men. We, in effect, have our diploma in masculinity and can go on to develop other skills.”
—Frank Pittman (20th century)