In the mathematical field of real analysis, a simple function is a (sufficiently 'nice' - see below for the formal definition) real-valued function over a subset of the real line which attains only a finite number of values. Some authors also require simple functions to be measurable; as used in practice, they invariably are.
A basic example of a simple function is the floor function over the half-open interval [1,9), whose only values are {1,2,3,4,5,6,7,8}. A more advanced example is the Dirichlet function over the real line, which takes the value 1 if x is rational and 0 otherwise. (Thus the "simple" of "simple function" has a technical meaning somewhat at odds with common language.) Note also that all step functions are simple.
Simple functions are used as a first stage in the development of theories of integration, such as the Lebesgue integral, because it is very easy to create a definition of an integral for a simple function, and also, it is straightforward to approximate more general functions by sequences of simple functions.
Read more about Simple Function: Definition, Properties of Simple Functions, Integration of Simple Functions, Relation To Lebesgue Integration
Famous quotes containing the words simple and/or function:
“How simple the writing of literature would be if it were only necessary to write in another way what has been well written. It is because we have had such great writers in the past that a writer is driven far out past where he can go, out to where no one can help him.”
—Ernest Hemingway (18991961)
“Of all the inhabitants of the inferno, none but Lucifer knows that hell is hell, and the secret function of purgatory is to make of heaven an effective reality.”
—Arnold Bennett (18671931)