Simple Function - Relation To Lebesgue Integration

Relation To Lebesgue Integration

Any non-negative measurable function is the pointwise limit of a monotonic increasing sequence of non-negative simple functions. Indeed, let be a non-negative measurable function defined over the measure space as before. For each, subdivide the range of into intervals, of which have length . For each, set

for, and .

(Note that, for fixed, the sets are disjoint and cover the non-negative real line.)

Now define the measurable sets

for .

Then the increasing sequence of simple functions

converges pointwise to as . Note that, when is bounded, the convergence is uniform. This approximation of by simple functions (which are easily integrable) allows us to define an integral itself; see the article on Lebesgue integration for more details.

Read more about this topic:  Simple Function

Famous quotes containing the words relation to, relation and/or integration:

    The difference between objective and subjective extension is one of relation to a context solely.
    William James (1842–1910)

    You know there are no secrets in America. It’s quite different in England, where people think of a secret as a shared relation between two people.
    —W.H. (Wystan Hugh)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)