Shortest Path Problem - Related Problems

Related Problems

For shortest path problems in computational geometry, see Euclidean shortest path.

The travelling salesman problem is the problem of finding the shortest path that goes through every vertex exactly once, and returns to the start. Unlike the shortest path problem, which can be solved in polynomial time in graphs without negative cycles, the travelling salesman problem is NP-complete and, as such, is believed not to be efficiently solvable (see P = NP problem). The problem of finding the longest path in a graph is also NP-complete.

The Canadian traveller problem and the stochastic shortest path problem are generalizations where either the graph isn't completely known to the mover, changes over time, or where actions (traversals) are probabilistic.

The shortest multiple disconnected path is a representation of the primitive path network within the framework of Reptation theory.

The problems of recalculation of shortest paths arises if some graph transformations (e.g., shrinkage of nodes) are made with a graph.

The widest path problem seeks a path so that the minimum label of any edge is as large as possible.

Read more about this topic:  Shortest Path Problem

Famous quotes containing the words related and/or problems:

    So universal and widely related is any transcendent moral greatness, and so nearly identical with greatness everywhere and in every age,—as a pyramid contracts the nearer you approach its apex,—that, when I look over my commonplace-book of poetry, I find that the best of it is oftenest applicable, in part or wholly, to the case of Captain Brown.
    Henry David Thoreau (1817–1862)

    I was a wonderful parent before I had children. I was an expert on why everyone else was having problems with theirs. Then I had three of my own.
    Adele Faber (20th century)