Shortest Path Problem

In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

This is analogous to the problem of finding the shortest path between two intersections on a road map: the graph's vertices correspond to intersections and the edges correspond to road segments, each weighted by the length of its road segment.

Read more about Shortest Path Problem:  Definition, Algorithms, Roadnetworks, Applications, Related Problems, Linear Programming Formulation

Famous quotes containing the words shortest, path and/or problem:

    The shortest route is not the most direct one, but rather the one where the most favorable winds swell our sails:Mthat is the lesson that seafarers teach. Not to abide by this lesson is to be obstinate: here, firmness of character is tainted with stupidity.
    Friedrich Nietzsche (1844–1900)

    After decades of unappreciated drudgery, American women just don’t do housework any more—that is, beyond the minimum that is required in order to clear a path from the bedroom to the front door so they can get off to work in the mourning.
    Barbara Ehrenreich (20th century)

    The problem is that we attempt to solve the simplest questions cleverly, thereby rendering them unusually complex. One should seek the simple solution.
    Anton Pavlovich Chekhov (1860–1904)