In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
This is analogous to the problem of finding the shortest path between two intersections on a road map: the graph's vertices correspond to intersections and the edges correspond to road segments, each weighted by the length of its road segment.
Read more about Shortest Path Problem: Definition, Algorithms, Roadnetworks, Applications, Related Problems, Linear Programming Formulation
Famous quotes containing the words shortest, path and/or problem:
“Cultivated labor drives out brute labor. An infinite number of shrewd men, in infinite years, have arrived at certain best and shortest ways of doing, and this accumulated skill in arts, cultures, harvestings, curings, manufactures, navigations, exchanges, constitutes the worth of our world to-day.”
—Ralph Waldo Emerson (18031882)
“The path was a vague parting in the grass
That led us to a weathered windowsill.
We pressed our faces to the pane. You see, he said,
Everythings as she left it when she died....”
—Robert Frost (18741963)
“What had really caused the womens movement was the additional years of human life. At the turn of the century womens life expectancy was forty-six; now it was nearly eighty. Our groping sense that we couldnt live all those years in terms of motherhood alone was the problem that had no name. Realizing that it was not some freakish personal fault but our common problem as women had enabled us to take the first steps to change our lives.”
—Betty Friedan (20th century)