Shaped Charge - Function

Function

A typical device consists of a solid cylinder of explosive with a metal-lined conical hollow in one end and a central detonator, array of detonators, or detonation wave guide at the other end. Explosive energy is released directly away from (normal to) the surface of an explosive, so shaping the explosive will concentrate the explosive energy in the void. If the hollow is properly shaped (usually conically), the enormous pressure generated by the detonation of the explosive drives the liner in the hollow cavity inward to collapse upon its central axis. The resulting collision forms and projects a high-velocity jet of metal forward along the axis. Most of the jet material originates from the innermost part of the liner, a layer of about 10% to 20% of the thickness. The rest of the liner forms a slower-moving slug of material, which, because of its appearance, is sometimes called a "carrot".

Because of the variation along the liner in its collapse velocity, the jet's velocity also varies along its length, decreasing from the front. This variation in jet velocity stretches it and eventually leads to its break-up into particles. Over time, the particles tend to fall out of alignment, which reduces the depth of penetration at long standoffs.

Also, at the apex of the cone, which forms the very front of the jet, the liner does not have time to be fully accelerated before it forms its part of the jet. This results in its small part of jet being projected at a lower velocity than jet formed later behind it. As a result, the initial parts of the jet coalesce to form a pronounced wider tip portion.

Most of the jet travels at hypersonic speed. The tip moves at 7 to 14 km/s, the jet tail at a lower velocity (1 to 3 km/s), and the slug at a still lower velocity (less than 1 km/s). The exact velocities depend on the charge's configuration and confinement, explosive type, materials used, and the explosive-initiation mode. At typical velocities, the penetration process generates such enormous pressures that it may be considered hydrodynamic; to a good approximation, the jet and armor may be treated as inviscid, incompressible fluids (see, for example,), with their material strengths ignored.

The location of the charge relative to its target is critical for optimum penetration for two reasons. If the charge is detonated too close there is not enough time for the jet to fully develop. But the jet disintegrates and disperses after a relatively short distance, usually well under 2 meters. At such standoffs, it breaks into particles which tend to tumble and drift off the axis of penetration, so that the successive particles tend to widen rather than deepen the hole. At very long standoffs, velocity is lost to air drag, further degrading penetration.

The key to the effectiveness of the hollow charge is its diameter. As the penetration continues through the target, the width of the hole decreases leading to a characteristic "fist to finger" action, where the size of the eventual "finger" is based on the size of the original "fist". In general, shaped charges can penetrate a steel plate as thick as 150% to 700% of their diameter, depending on the charge quality. The figure is for basic steel plate, not for the composite armor, reactive armor, or other types of modern armor.

Read more about this topic:  Shaped Charge

Famous quotes containing the word function:

    Any translation which intends to perform a transmitting function cannot transmit anything but information—hence, something inessential. This is the hallmark of bad translations.
    Walter Benjamin (1892–1940)

    Science has fulfilled her function when she has ascertained and enunciated truth.
    Thomas Henry Huxley (1825–95)

    The press and politicians. A delicate relationship. Too close, and danger ensues. Too far apart and democracy itself cannot function without the essential exchange of information. Creative leaks, a discreet lunch, interchange in the Lobby, the art of the unattributable telephone call, late at night.
    Howard Brenton (b. 1942)