Definition and Conventions
Conventions differ as to which argument should be linear. We take the first to be conjugate-linear and the second to be linear. This is the convention used by essentially all physicists and originates in Dirac's bra-ket notation in quantum mechanics. The opposite convention is perhaps more common in mathematics but is not universal.
Specifically a map φ : V × V → C is sesquilinear if
for all x,y,z,w ∈ V and all a, b ∈ C.
A sesquilinear form can also be viewed as a complex bilinear map
where is the complex conjugate vector space to V. By the universal property of tensor products these are in one-to-one correspondence with (complex) linear maps
For a fixed z in V the map is a linear functional on V (i.e. an element of the dual space V*). Likewise, the map is a conjugate-linear functional on V.
Given any sesquilinear form φ on V we can define a second sesquilinear form ψ via the conjugate transpose:
In general, ψ and φ will be different. If they are the same then φ is said to be Hermitian. If they are negatives of one another, then φ is said to be skew-Hermitian. Every sesquilinear form can be written as a sum of a Hermitian form and a skew-Hermitian form.
Read more about this topic: Sesquilinear Form
Famous quotes containing the words definition and/or conventions:
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“Languages exist by arbitrary institutions and conventions among peoples; words, as the dialecticians tell us, do not signify naturally, but at our pleasure.”
—François Rabelais (14941553)