Sesquilinear Form

In mathematics, a sesquilinear form on a complex vector space V is a map V × VC that is linear in one argument and antilinear in the other. The name originates from the numerical prefix sesqui- meaning "one and a half". Compare with a bilinear form, which is linear in both arguments; although many authors, especially when working solely in a complex setting, refer to sesquilinear forms as bilinear forms.

A motivating example is the inner product on a complex vector space, which is not bilinear, but instead sesquilinear. See geometric motivation below.

Read more about Sesquilinear Form:  Definition and Conventions, Geometric Motivation, Hermitian Form, Skew-Hermitian Form, Generalization

Famous quotes containing the word form:

    Nothing comes to pass in nature, which can be set down to a flaw therein; for nature is always the same and everywhere one and the same in her efficiency and power of action; that is, nature’s laws and ordinances whereby all things come to pass and change from one form to another, are everywhere and always; so that there should be one and the same method of understanding the nature of all things whatsoever, namely, through nature’s universal laws and rules.
    Baruch (Benedict)