Definition
Given a Riemannian manifold and two linearly independent tangent vectors at the same point, u and v, we can define
Here R is the Riemann curvature tensor.
In particular, if u and v are orthonormal, then
The sectional curvature in fact depends only on the 2-plane σp in the tangent space at p spanned by u and v. It is called the sectional curvature of the 2-plane σp, and is denoted K(σp).
Read more about this topic: Sectional Curvature
Famous quotes containing the word definition:
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)