Schwartz Space - Definition

Definition

The Schwartz space or space of rapidly decreasing functions on Rn is the function space

where α, β are multi-indices, C∞(Rn) is the set of smooth functions from Rn to C, and

Here, sup denotes the supremum, and we again use multi-index notation.

To put common language to this definition, we could note that a rapidly decreasing function is essentially a function f(x) such that f(x), f′(x), f′′(x), ... all exist everywhere on R and go to zero as x → ±∞ faster than any inverse power of x. Especially, S(Rn) is a subspace of the function space C∞(Rn) of infinitely smooth functions.

Read more about this topic:  Schwartz Space

Famous quotes containing the word definition:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)