Definition
The Schwartz space or space of rapidly decreasing functions on Rn is the function space
where α, β are multi-indices, C∞(Rn) is the set of smooth functions from Rn to C, and
Here, sup denotes the supremum, and we again use multi-index notation.
To put common language to this definition, we could note that a rapidly decreasing function is essentially a function f(x) such that f(x), f′(x), f′′(x), ... all exist everywhere on R and go to zero as x → ±∞ faster than any inverse power of x. Especially, S(Rn) is a subspace of the function space C∞(Rn) of infinitely smooth functions.
Read more about this topic: Schwartz Space
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)