Phase Transitions
In statistical mechanics, as a system undergoes a phase transition, its fluctuations are described by a scale-invariant statistical field theory. For a system in equilibrium (i.e. time-independent) in D spatial dimensions, the corresponding statistical field theory is formally similar to a D-dimensional CFT. The scaling dimensions in such problems are usually referred to as critical exponents, and one can in principle compute these exponents in the appropriate CFT.
Read more about this topic: Scale Invariance
Famous quotes containing the word phase:
“The Indians feel that each stage is crucial and that the child should be allowed to dwell in each for the appropriate period of time so that every aspect of his being can evolve, just as a plant evolves in the proper time and sequence of the seasons. Otherwise, the child never has a chance to master himself in any one phase of his life.”
—Alan Quetone (20th century)