Scale Invariance

In physics, mathematics, statistics, and economics, scale invariance is a feature of objects or laws that does not change if scales of length, energy, or other variables, are multiplied by a common factor. The technical term for this transformation is a dilatation (also known as dilation), and the dilatations can also form part of a larger conformal symmetry.

  • In mathematics, scale invariance usually refers to an invariance of individual functions or curves. A closely related concept is self-similarity, where a function or curve is invariant under a discrete subset of the dilatations. It is also possible for the probability distributions of random processes to display this kind of scale invariance or self-similarity.
  • In classical field theory, scale invariance most commonly applies to the invariance of a whole theory under dilatations. Such theories typically describe classical physical processes with no characteristic length scale.
  • In quantum field theory, scale invariance has an interpretation in terms of particle physics. In a scale-invariant theory, the strength of particle interactions does not depend on the energy of the particles involved.
  • In statistical mechanics, scale invariance is a feature of phase transitions. The key observation is that near a phase transition or critical point, fluctuations occur at all length scales, and thus one should look for an explicitly scale-invariant theory to describe the phenomena. Such theories are scale-invariant statistical field theories, and are formally very similar to scale-invariant quantum field theories.
  • Universality is the observation that widely different microscopic systems can display the same behaviour at a phase transition. Thus phase transitions in many different systems may be described by the same underlying scale-invariant theory.
  • In general, dimensionless quantities are scale invariant. The analogous concept in statistics are standardized moments, which are scale invariant statistics of a variable, while the unstandardized moments are not.

Read more about Scale Invariance:  Scale-invariant Curves and Self-similarity, Scale Invariance in Stochastic Processes, Scale Invariance in Classical Field Theory, Scale Invariance in Quantum Field Theory, Phase Transitions, Universality

Famous quotes containing the word scale:

    I have spent all my life under a Communist regime, and I will tell you that a society without any objective legal scale is a terrible one indeed. But a society with no other scale but the legal one is not quite worthy of man either.
    Alexander Solzhenitsyn (b. 1918)