Direct Geometric Interpretation
When the scalar curvature is positive at a point, the volume of a small ball about the point has smaller volume than a ball of the same radius in Euclidean space. On the other hand, when the scalar curvature is negative at a point, the volume of a small ball is instead larger than it would be in Euclidean space.
This can be made more quantitative, in order to characterize the precise value of the scalar curvature S at a point p of a Riemannian n-manifold . Namely, the ratio of the n-dimensional volume of a ball of radius ε in the manifold to that of a corresponding ball in Euclidean space is given, for small ε, by
Thus, the second derivative of this ratio, evaluated at radius ε = 0, is exactly minus the scalar curvature divided by 3(n + 2).
Boundaries of these balls are (n-1) dimensional spheres with radii ; their hypersurface measures ("areas") satisfy the following equation:
Read more about this topic: Scalar Curvature
Famous quotes containing the words direct and/or geometric:
“A concern with parenting...must direct attention beyond behavior. This is because parenting is not simply a set of behaviors, but participation in an interpersonal, diffuse, affective relationship. Parenting is an eminently psychological role in a way that many other roles and activities are not.”
—Nancy Chodorow (20th century)
“New York ... is a city of geometric heights, a petrified desert of grids and lattices, an inferno of greenish abstraction under a flat sky, a real Metropolis from which man is absent by his very accumulation.”
—Roland Barthes (19151980)