Direct Geometric Interpretation
When the scalar curvature is positive at a point, the volume of a small ball about the point has smaller volume than a ball of the same radius in Euclidean space. On the other hand, when the scalar curvature is negative at a point, the volume of a small ball is instead larger than it would be in Euclidean space.
This can be made more quantitative, in order to characterize the precise value of the scalar curvature S at a point p of a Riemannian n-manifold . Namely, the ratio of the n-dimensional volume of a ball of radius ε in the manifold to that of a corresponding ball in Euclidean space is given, for small ε, by
Thus, the second derivative of this ratio, evaluated at radius ε = 0, is exactly minus the scalar curvature divided by 3(n + 2).
Boundaries of these balls are (n-1) dimensional spheres with radii ; their hypersurface measures ("areas") satisfy the following equation:
Read more about this topic: Scalar Curvature
Famous quotes containing the words direct and/or geometric:
“The most passionate, consistent, extreme and implacable enemy of the Enlightenment and ... all forms of rationalism ... was Johann Georg Hamann. His influence, direct and indirect, upon the romantic revolt against universalism and scientific method ... was considerable and perhaps crucial.”
—Isaiah Berlin (b. 1909)
“New York ... is a city of geometric heights, a petrified desert of grids and lattices, an inferno of greenish abstraction under a flat sky, a real Metropolis from which man is absent by his very accumulation.”
—Roland Barthes (19151980)