Saddle Point - Mathematical Discussion

Mathematical Discussion

A simple criterion for checking if a given stationary point of a real-valued function F(x,y) of two real variables is a saddle point is to compute the function's Hessian matrix at that point: if the Hessian is indefinite, then that point is a saddle point. For example, the Hessian matrix of the function at the stationary point is the matrix

\begin{bmatrix}
2 & 0\\
0 & -2 \\
\end{bmatrix}

which is indefinite. Therefore, this point is a saddle point. This criterion gives only a sufficient condition. For example, the point is a saddle point for the function but the Hessian matrix of this function at the origin is the null matrix, which is not indefinite.

In the most general terms, a saddle point for a smooth function (whose graph is a curve, surface or hypersurface) is a stationary point such that the curve/surface/etc. in the neighborhood of that point is not entirely on any side of the tangent space at that point.

In one dimension, a saddle point is a point which is both a stationary point and a point of inflection. Since it is a point of inflection, it is not a local extremum.

Read more about this topic:  Saddle Point

Famous quotes containing the words mathematical and/or discussion:

    The most distinct and beautiful statement of any truth must take at last the mathematical form.
    Henry David Thoreau (1817–1862)

    My companion and I, having a minute’s discussion on some point of ancient history, were amused by the attitude which the Indian, who could not tell what we were talking about, assumed. He constituted himself umpire, and, judging by our air and gesture, he very seriously remarked from time to time, “you beat,” or “he beat.”
    Henry David Thoreau (1817–1862)