Saddle Point - Mathematical Discussion

Mathematical Discussion

A simple criterion for checking if a given stationary point of a real-valued function F(x,y) of two real variables is a saddle point is to compute the function's Hessian matrix at that point: if the Hessian is indefinite, then that point is a saddle point. For example, the Hessian matrix of the function at the stationary point is the matrix

\begin{bmatrix}
2 & 0\\
0 & -2 \\
\end{bmatrix}

which is indefinite. Therefore, this point is a saddle point. This criterion gives only a sufficient condition. For example, the point is a saddle point for the function but the Hessian matrix of this function at the origin is the null matrix, which is not indefinite.

In the most general terms, a saddle point for a smooth function (whose graph is a curve, surface or hypersurface) is a stationary point such that the curve/surface/etc. in the neighborhood of that point is not entirely on any side of the tangent space at that point.

In one dimension, a saddle point is a point which is both a stationary point and a point of inflection. Since it is a point of inflection, it is not a local extremum.

Read more about this topic:  Saddle Point

Famous quotes containing the words mathematical and/or discussion:

    What he loved so much in the plant morphological structure of the tree was that given a fixed mathematical basis, the final evolution was so incalculable.
    —D.H. (David Herbert)

    If the abstract rights of man will bear discussion and explanation, those of women, by a parity of reasoning, will not shrink from the same test: though a different opinion prevails in this country.
    Mary Wollstonecraft (1759–1797)