Roman Surface - Structure of The Roman Surface

Structure of The Roman Surface

The Roman surface has four bulbous "lobes", each one on a different corner of a tetrahedron.

A Roman surface can be constructed by splicing together three hyperbolic paraboloids and then smoothing out the edges as necessary so that it will fit a desired shape (e.g. parametrization).

Let there be these three hyperbolic paraboloids:

  • x = yz,
  • y = zx,
  • z = xy.

These three hyperbolic paraboloids intersect externally along the six edges of a tetrahedron and internally along the three axes. The internal intersections are loci of double points. The three loci of double points: x = 0, y = 0, and z = 0, intersect at a triple point at the origin.

For example, given x = yz and y = zx, the second paraboloid is equivalent to x = y/z. Then

and either y = 0 or z2 = 1 so that z = ±1. Their two external intersections are

  • x = y, z = 1;
  • x = −y, z = −1.

Likewise, the other external intersections are

  • x = z, y = 1;
  • x = −z, y = −1;
  • y = z, x = 1;
  • y = −z, x = −1.

Let us see the pieces being put together. Join the paraboloids y = xz and x = yz. The result is shown in Figure 1.

Figure 1.

The paraboloid y = x z is shown in blue and orange. The paraboloid x = y z is shown in cyan and purple. In the image the paraboloids are seen to intersect along the z = 0 axis. If the paraboloids are extended, they should also be seen to intersect along the lines

  • z = 1, y = x;
  • z = −1, y = −x.

The two paraboloids together look like a pair of orchids joined back-to-back.

Now run the third hyperbolic paraboloid, z = xy, through them. The result is shown in Figure 2.

Figure 2.

On the west-southwest and east-northeast directions in Figure 2 there are a pair of openings. These openings are lobes and need to be closed up. When the openings are closed up, the result is the Roman surface shown in Figure 3.

Figure 3. Roman surface.

A pair of lobes can be seen in the West and East directions of Figure 3. Another pair of lobes are hidden underneath the third (z = xy) paraboloid and lie in the North and South directions.

If the three intersecting hyperbolic paraboloids are drawn far enough that they intersect along the edges of a tetrahedron, then the result is as shown in Figure 4.

Figure 4.

One of the lobes is seen frontally—head on—in Figure 4. The lobe can be seen to be one of the four corners of the tetrahedron.

If the continuous surface in Figure 4 has its sharp edges rounded out—smoothed out—then the result is the Roman surface in Figure 5.

Figure 5. Roman surface.

One of the lobes of the Roman surface is seen frontally in Figure 5, and its bulbous – balloon-like—shape is evident.

If the surface in Figure 5 is turned around 180 degrees and then turned upside down, the result is as shown in Figure 6.

Figure 6. Roman surface.

Figure 6 shows three lobes seen sideways. Between each pair of lobes there is a locus of double points corresponding to a coordinate axis. The three loci intersect at a triple point at the origin. The fourth lobe is hidden and points in the direction directly opposite from the viewer. The Roman surface shown at the top of this article also has three lobes in sideways view.

Read more about this topic:  Roman Surface

Famous quotes containing the words structure of the, structure of, structure, roman and/or surface:

    In the extent and proper structure of the Union, therefore, we behold a republican remedy for the diseases most incident to republican government.
    James Madison (1751–1836)

    In the extent and proper structure of the Union, therefore, we behold a republican remedy for the diseases most incident to republican government.
    James Madison (1751–1836)

    Man is more disposed to domination than freedom; and a structure of dominion not only gladdens the eye of the master who rears and protects it, but even its servants are uplifted by the thought that they are members of a whole, which rises high above the life and strength of single generations.
    Karl Wilhelm Von Humboldt (1767–1835)

    Brutus. Now, as you are a Roman, tell me true.
    Messala. Then like a Roman bear the truth I tell,
    For certain she is dead, and by strange manner.
    Brutus. Why, farewell, Portia. We must die, Messala.
    William Shakespeare (1564–1616)

    All beauties contain, like all possible phenomena, something eternal and something transitory,—something absolute and something particular. Absolute and eternal beauty does not exist, or rather it is only an abstraction skimmed from the common surface of different sorts of beauty. The particular element of each beauty comes from the emotions, and as we each have our own particular emotions, so we have our beauty.
    Charles Baudelaire (1821–1867)