Structure of The Roman Surface
The Roman surface has four bulbous "lobes", each one on a different corner of a tetrahedron.
A Roman surface can be constructed by splicing together three hyperbolic paraboloids and then smoothing out the edges as necessary so that it will fit a desired shape (e.g. parametrization).
Let there be these three hyperbolic paraboloids:
- x = yz,
- y = zx,
- z = xy.
These three hyperbolic paraboloids intersect externally along the six edges of a tetrahedron and internally along the three axes. The internal intersections are loci of double points. The three loci of double points: x = 0, y = 0, and z = 0, intersect at a triple point at the origin.
For example, given x = yz and y = zx, the second paraboloid is equivalent to x = y/z. Then
and either y = 0 or z2 = 1 so that z = ±1. Their two external intersections are
- x = y, z = 1;
- x = −y, z = −1.
Likewise, the other external intersections are
- x = z, y = 1;
- x = −z, y = −1;
- y = z, x = 1;
- y = −z, x = −1.
Let us see the pieces being put together. Join the paraboloids y = xz and x = yz. The result is shown in Figure 1.
|
The paraboloid y = x z is shown in blue and orange. The paraboloid x = y z is shown in cyan and purple. In the image the paraboloids are seen to intersect along the z = 0 axis. If the paraboloids are extended, they should also be seen to intersect along the lines
- z = 1, y = x;
- z = −1, y = −x.
The two paraboloids together look like a pair of orchids joined back-to-back.
Now run the third hyperbolic paraboloid, z = xy, through them. The result is shown in Figure 2.
|
On the west-southwest and east-northeast directions in Figure 2 there are a pair of openings. These openings are lobes and need to be closed up. When the openings are closed up, the result is the Roman surface shown in Figure 3.
|
A pair of lobes can be seen in the West and East directions of Figure 3. Another pair of lobes are hidden underneath the third (z = xy) paraboloid and lie in the North and South directions.
If the three intersecting hyperbolic paraboloids are drawn far enough that they intersect along the edges of a tetrahedron, then the result is as shown in Figure 4.
|
One of the lobes is seen frontally—head on—in Figure 4. The lobe can be seen to be one of the four corners of the tetrahedron.
If the continuous surface in Figure 4 has its sharp edges rounded out—smoothed out—then the result is the Roman surface in Figure 5.
|
One of the lobes of the Roman surface is seen frontally in Figure 5, and its bulbous – balloon-like—shape is evident.
If the surface in Figure 5 is turned around 180 degrees and then turned upside down, the result is as shown in Figure 6.
|
Figure 6 shows three lobes seen sideways. Between each pair of lobes there is a locus of double points corresponding to a coordinate axis. The three loci intersect at a triple point at the origin. The fourth lobe is hidden and points in the direction directly opposite from the viewer. The Roman surface shown at the top of this article also has three lobes in sideways view.
Read more about this topic: Roman Surface
Famous quotes containing the words structure of, structure, roman and/or surface:
“Just as a new scientific discovery manifests something that was already latent in the order of nature, and at the same time is logically related to the total structure of the existing science, so the new poem manifests something that was already latent in the order of words.”
—Northrop Frye (b. 1912)
“Women over fifty already form one of the largest groups in the population structure of the western world. As long as they like themselves, they will not be an oppressed minority. In order to like themselves they must reject trivialization by others of who and what they are. A grown woman should not have to masquerade as a girl in order to remain in the land of the living.”
—Germaine Greer (b. 1939)
“Semantically, taste is rich and confusing, its etymology as odd and interesting as that of style. But while stylederiving from the stylus or pointed rod which Roman scribes used to make marks on wax tabletssuggests activity, taste is more passive.... Etymologically, the word we use derives from the Old French, meaning touch or feel, a sense that is preserved in the current Italian word for a keyboard, tastiera.”
—Stephen Bayley, British historian, art critic. Taste: The Story of an Idea, Taste: The Secret Meaning of Things, Random House (1991)
“All the aspects of this desert are beautiful, whether you behold it in fair weather or foul, or when the sun is just breaking out after a storm, and shining on its moist surface in the distance, it is so white, and pure, and level, and each slight inequality and track is so distinctly revealed; and when your eyes slide off this, they fall on the ocean.”
—Henry David Thoreau (18171862)