Real Projective Plane

In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold, that is, a one-sided surface. It cannot be embedded in our usual three-dimensional space without intersecting itself. It has basic applications to geometry, since the common construction of the real projective plane is as the space of lines in R3 passing through the origin.

The plane is also often described topologically, in terms of a construction based on the Möbius strip: if one could glue the (single) edge of the Möbius strip to itself in the correct direction, one would obtain the projective plane. (This cannot be done in our three-dimensional space.) Equivalently, gluing a disk along the boundary of the Möbius strip gives the projective plane. Topologically, it has Euler characteristic 1, hence a demigenus (non-orientable genus, Euler genus) of 1.

Since the Möbius strip, in turn, can be constructed from a square by gluing two of its sides together, the real projective plane can thus be represented as a unit square (that is, × ) with its sides identified by the following equivalence relations:

(0, y) ~ (1, 1 − y) for 0 ≤ y ≤ 1

and

(x, 0) ~ (1 − x, 1) for 0 ≤ x ≤ 1,

as in the leftmost diagram on the right.

Read more about Real Projective Plane:  Examples, Homogeneous Coordinates, The Flat Projective Plane, Embedding Into 4-dimensional Space, Higher Non-orientable Surfaces

Famous quotes containing the words real and/or plane:

    The Troubles are a pigmentation in our lives here, a constant irritation that detracts from real life. But life has to do with something else as well, and it’s the other things which are the more permanent and real.
    Brian Friel (b. 1929)

    Even though I had let them choose their own socks since babyhood, I was only beginning to learn to trust their adult judgment.. . . I had a sensation very much like the moment in an airplane when you realize that even if you stop holding the plane up by gripping the arms of your seat until your knuckles show white, the plane will stay up by itself. . . . To detach myself from my children . . . I had to achieve a condition which might be called loving objectivity.
    —Anonymous Parent of Adult Children. Ourselves and Our Children, by Boston Women’s Health Book Collective, ch. 5 (1978)