Definitions and Concepts
Let V be a vector space over a field F. For instance, suppose V is Rn or Cn, the standard n-dimensional space of column vectors over the real or complex numbers respectively. In this case, the idea of representation theory is to do abstract algebra concretely by using n × n matrices of real or complex numbers.
There are three main sorts of algebraic objects for which this can be done: groups, associative algebras and Lie algebras.
- The set of all invertible n × n matrices is a group under matrix multiplication and the representation theory of groups analyses a group by describing ("representing") its elements in terms of invertible matrices.
- Matrix addition and multiplication make the set of all n × n matrices into an associative algebra and hence there is a corresponding representation theory of associative algebras.
- If we replace matrix multiplication MN by the matrix commutator MN − NM, then the n × n matrices become instead a Lie algebra, leading to a representation theory of Lie algebras.
This generalizes to any field F and any vector space V over F, with linear maps replacing matrices and composition replacing matrix multiplication: there is a group GL(V,F) of automorphisms of V, an associative algebra EndF(V) of all endomorphisms of V, and a corresponding Lie algebra gl(V,F).
Read more about this topic: Representation Theory
Famous quotes containing the words definitions and/or concepts:
“Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.”
—Edmond De Goncourt (18221896)
“During our twenties...we act toward the new adulthood the way sociologists tell us new waves of immigrants acted on becoming Americans: we adopt the host cultures values in an exaggerated and rigid fashion until we can rethink them and make them our own. Our idea of what adults are and what were supposed to be is composed of outdated childhood concepts brought forward.”
—Roger Gould (20th century)