Classification Of Finite Simple Groups
In mathematics, the classification of the finite simple groups is a theorem stating that every finite simple group belongs to one of four categories described below. These groups can be seen as the basic building blocks of all finite groups, in much the same way as the prime numbers are the basic building blocks of the natural numbers. The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups.
The proof of the theorem consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Gorenstein (d.1992), Lyons, and Solomon are gradually publishing a simplified and revised version of the proof.
Read more about Classification Of Finite Simple Groups: Statement of The Classification Theorem, Overview of The Proof of The Classification Theorem, Second-generation Classification
Famous quotes containing the words finite, simple and/or groups:
“Sisters define their rivalry in terms of competition for the gold cup of parental love. It is never perceived as a cup which runneth over, rather a finite vessel from which the more one sister drinks, the less is left for the others.”
—Elizabeth Fishel (20th century)
“All propaganda or popularization involves a putting of the complex into the simple, but such a move is instantly deconstructive. For if the complex can be put into the simple, then it cannot be as complex as it seemed in the first place; and if the simple can be an adequate medium of such complexity, then it cannot after all be as simple as all that.”
—Terry Eagleton (b. 1943)
“If we can learn ... to look at the ways in which various groups appropriate and use the mass-produced art of our culture ... we may well begin to understand that although the ideological power of contemporary cultural forms is enormous, indeed sometimes even frightening, that power is not yet all-pervasive, totally vigilant, or complete.”
—Janice A. Radway (b. 1949)